https://bakeryrahmat.com/ https://reliabel.fpsi.unjani.ac.id/ https://jurnal.polkesban.ac.id/ https://ejournal.nusamandiri.ac.id/gacor/ Publication - A new feature for the classification of non-stationary signals based on the direction of signal energy in the time–frequency domain

A new feature for the classification of non-stationary signals based on the direction of signal energy in the time–frequency domain

Nabeel Ali Khan; Sadiq Ali
Abstract:
The detection of seizure activity in electroencephalogram (EEG) segments is very important for the classification and localization of epileptic seizures. The evolution of a seizure in an EEG usually appears as a train of non-uniformly spaced spikes and/or as piecewise linear frequency modulated signals. If a seizure is present, then the energy of the EEG is concentrated along the time axis and the frequency axis in the time–frequency plane. However, in the absence of a seizure, the energy of the EEG signal is uniformly distributed along all directions in the time–frequency plane. Based on this observation, we propose a new approach for the detection of a seizure. In this paper, we develop a new feature that exploits the direction of the energy of the signal in the time–frequency domain to distinguish between seizures and non-seizures in an EEG. Our experimental results indicate the superiority of the proposed approach over other conventional time–frequency approaches; for example, the proposed feature set achieves a classification accuracy of 98.25% by only using five features
research from:
Year:
2018
Type of Publication:
Article
Journal:
Computers in Biology and Medicine
Volume:
100
Number:
1
Pages:
10-16
Month:
9
DOI:
10.1016/j.compbiomed.2018.06.018

Contact Us

Foundation University Islamabad

Contact us at: research@fui.edu.pk

  •   Islamabad Campus:(+92)51-5788171-250

  •   Rawalpindi Campus:(+92)51-5151437-38

Newsletter

Enter your email and we'll send you more information

Search